
 1

Creating and Using Quality
Software Delivery
Measurements and Metrics

Peter Caron

 2

INTRODUCTION 3

MEASUREMENTS 4

THE GOOD, THE BAD AND THE INEFFICIENT 4
FAILURE DEMAND 5
OUTCOME METRICS 5
INPUT METRICS 6

BIOMARKERS 8

TOXICITY 9

SERVICES 10

PRODUCTS 10

ALTERNATIVES 11
TRANSPARENCY VIA DASHBOARDS 11

CODE REVIEW 11

DESCRIPTION 11
SUGGESTED PRACTICES 12
THINGS TO AVOID 13
METRICS 13

CONCLUSION 13

BIBLIOGRAPHY 15

 3

Introduction

In the 1990s, physicist turned management guru Eli Goldratt mused “if you tell me what
you are going to measure, I’ll tell you how I am going to behave.”1 In other words,
measuring something influences its behaviour: whether the target is a photon or a
software developer. Today, software development teams suffer from both inaccurate
measurements of their performance and unrealistic expectations of what they can achieve
in a given time. Both these shortcomings stem from the way many companies measure
how their products are developed and delivered. In order to generate valuable metrics to
accurately assess the quality and efficiency of software products and development
practices, we need to keep Goldratt’s supposition in mind and we should choose our
metrics accordingly.
The discussion of how to measure developers is not at all new. Managers have tried in
many ways to measure the quality of development work and even developers with varying
degrees of success.
In this article I address the question of how to measure developer workforce
productivity in general and development effectiveness specifically. As most seasoned
managers will already have learned, development measurements are best assessed
against groups of engineers aligned to an outcome: a service or a product delivers a
tangible result or value, rather than against any individual activity: how hard a developer
works.
Quality metrics, by which I mean here the quality of the metrics rather than of the final
product, are a set of measurements employed over time to analyse the results of the
efforts of a development team and to measure how well they have achieved the goals
assigned to them (i.e. they have met the definition of done). It is an important element of
an effective set of metrics that they are outcome-oriented as opposed to output or activity-
oriented and that when possible, they provide leading rather than lagging indicators. This
means that metrics should help avoid problems rather than simply presenting them after
the release. In other words, the purpose of any useful software metric is to provide
indictors that can be used to assess productivity, costs, quality, degree of automation, etc.
while that work is in progress.
How effective development is achieved by any group is dependent upon many factors.
Since developers rarely work in isolation they are often impacted by actions and decisions
taken outside their own spheres of influence. There are also many business factors
outside of a development team’s control which hinder their daily tasks and work. An
obvious example is a set of poorly described requirements which result in wasted time
and effort for developers. Though this wasted time represents a clear burden on a
company, there is, for managers, HR, Finance and others, no easy, objective way to
measure an individual programmer’s productivity or determine which individuals are doing
better or faster work than others. It is also extremely difficult and risky to try to compare
productivity across teams.

1 Goldratt, E.M., The Haystack Syndrome, 1990.

 4

Measurements
The Good, the Bad and the Inefficient
How then do we quantify development quality and effectiveness? It should come as no
surprise that traditional metrics fail to fully satisfy development objectives, yet people still
insist on proposing them as viable alternatives. Can’t we measure bug escape levels or
Defect Density? How about failing test to judge the quality of software? The assumption
of the latter is especially insidious and is often found in companies that expect a “bug-
free” release to the customer. These folks would do well to remember that tests are there
to fail not to pass. Finding bugs in our system is the whole raison d’être of Continuous
Integration.

Continuous Integration doesn’t get rid of bugs, but it does
make them dramatically easier to find and remove.”

- Martin Fowler, Chief Scientist, ThoughtWorks

Yet, throughout the industry people continue to insist on tracking that either tell us little or
are entirely misleading. Here are some examples of useless metrics:

• Lines of code (LOC) has an obvious flaw in that someone can write 20K lines of bad code
in place of 1k of functional code to do the same thing.

• Defect Density (Defect/kLoC) usually calculated as defects per thousand lines of code is,
like LOC above, fundamentally flawed. Redefining defects (by severity or timing) whether
intentional or not alters the perception of quality. There are many problems with this kind
of calculation: different languages generate different size code – sometime wildly so, do
you calculate only new code and new bugs or all code and new bugs, ... But the biggest
shortcoming of Defect Density is this: when a team is actively refactoring code by removing
unneeded functions or rewriting poor classes, they will usually see decreases in the LoC.
In such a case, their Defect Density will actually increase even if they produce the same
or fewer defects in a certain period.

• Function points describe activity whereas we want to assess development teams on
results. Not only do poor programmers require more function points to accomplish the
same tasks as experts, but experts spend at least some of their time in activities which are
not captured by points - thinking, coaching, code reviews, etc.

CI/CD guru and author, Jez Humble has written: “Our most productive people are those
that find ingenious ways to avoid writing any code at all.” Hence, you should avoid any
LoC-based metric and avoid function points. Both are activity-based indicators as
opposed to outcome-based.

Here are some other metrics that are easily abused or manipulated and should be
avoided:

• Velocity: This often leads to point inflation
• Cycle time: This sometimes leads to people staying busy but not delivering any real value.

Nevertheless, cycle time can be tracked and used as a positive indicator if done in
combination with other measurements.

There are many more ways in which metrics can be manipulated to distort their
usefulness, but we need to minimise these risks by focusing on useful calculations.
Metrics can and will be interpreted to fit a narrative: often enough not of your own

 5

choosing. Facts too can and will be twisted to fit someone’s narrative at least as often as
the other way around. This does not always imply a duplicitous action on anyone’s part
as historian Jerry Z. Muller describes in his enlightening book, The Tyranny of Metrics.
Though not written with software developers in mind, the lessons in his book are equally
applicable to the SDLC. If developers know what you are measuring and there is a way to
manipulate the results, the results will change: intentionally or not.

Before we choose which metrics we want to collect, we first need to decide what we need
these metrics to tell us. In other words, decide on which metrics are most relevant to
describe our business objectives. Mapping metrics to business objectives is often one of
the most challenging tasks for companies.

Failure Demand
Viable and supportable software development needs to avoid something called failure
demand. Failure demand is work created by failing to do the right thing the first time. A
measure that is reasonably indicative of development efficiency is the amount of time
spent on unplanned work and excess rework. This is one of the biggest forms of waste in
an organization. Unplanned work and rework leads to longer development and release
cycles but also diverts resources from work that would otherwise add real value. If it is not
already understood by everyone, it should be: bugs and mistakes in software add
significantly to the total cost of a project or product development. Development
rework costs are reflected in higher maintenance and support costs and there are also
direct costs associated with the business: Downtime, security breaches, lost IP, lost
customers, fines or lawsuits. Yet time and again companies either misrepresent the total
cost of a project by ignoring the cost of rework in both estimates and final calculations.
Since 2014, Puppet Labs has published the “State of DevOps Report” in which they try to
identify the key capabilities that drive software delivery performance. The authors have
done their best to correlate what practices lead to high performing companies defined as
those that release quality software fast.
Software metrics can be divided into at least two categories: outcome and input. As stated
previously, outcome-oriented means measuring a state after software is released as
opposed to output or activity-oriented which measures the effort used to achieve that
release. To illustrate the difference an outcome metric is delivery frequency: we delivered
a tested, working version of the software four times this month. An activity metric is person
days required to create a release: we spent 440 person-days this month to ship a version
to the customer including meetings, testing, etc. We want to concentrate on measuring
outcome which represents to us a business value (i.e. we delivered something to the
customer).

Outcome Metrics
One of the most effective ways to measure transformational change is to use metrics
which are not easily manipulated, and which track outcomes – velocity in the form of
throughput and quality by measuring service or product stability. The first two
measurements (1,2) gauge throughput, the second two measurements gauge stability

 6

(3,4) which in this case is a surrogate for stability and quality. Outcome metrics which best
measure the throughput and stability of services2 are:

1. Delivery Frequency. How often is a service deployed to production?
2. Cycle time or Lead time for changes. How much time elapsed from a change being

decided or developed to getting into production?

3. Mean Time to Recover (MTTR). How long did it take to get a fix for a known issue into
production? We can extend this by breaking it down into components

4. Change Failure Rate (CFR). Measure how many times deployed software needs to be
fixed once in production.

Outcome metrics which best measure the throughput and stability of products3 are:

1. Delivery Frequency. How often is a product ready to be shipped to the customer?
2. Cycle time or Lead time for changes. How much time elapsed from a change being

decided or developed to getting into production?

3. Mean Time to Reshipment (MTTR). How long did it take to get a fix for a known issue to
the customer?

4. Change Failure Rate (CFR). Measure how many times shipped software needs to be
fixed once delivered.

As a trend measurement only, it is possible to define the above in a single number tracked over
time. An Eindex can be calculated from these measurements with a target for an individual or
collection of services.

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

	×
𝐿𝑇𝑜𝑝𝑡	 × 	𝑀𝑇𝑇𝑅𝑜𝑝𝑡

𝐿𝑇	 × 	𝑀𝑇𝑇𝑅
	= 𝐸𝑖𝑛𝑑𝑒𝑥

In this example, an Eindex score which is higher is better, one that is lower is worse4.

Input Metrics

To help assess the quality of the software itself, we can measure other development or
input metrics explicitly associated with code and which can measure productivity for
services development.
These include:

• % of new code covered by integration tests (should be >95%)
• Code and author churn / Code toxicity (see below)

o Code churn and Author churn are measurements which help to identify potential hotspots
in code. An index would be based on complexity trends. A measure can have “red” warnings
during a given time frame.

• Code complexity, hotspots and toxicity.

Complexity and hotspots are well-defined and can be visualised using a tool like
CodeScene from Empear. In CodeScene, hotspots are calculated by measuring the
changes to a file over time and corelating them with a McCabe complexity across the

2 “State of DevOps Reports”, Puppet Labs, 2016.
3 Ibid.
4 Optimal (opt) are our target values.

 7

same time. This allows development teams to identify and address the highest risk and
most volatile code and hopefully insert it into the backlog. In this way, refactoring is an
ongoing task.

One can also plot a trend over time as illustrated in the figure below:

Figure 1 This is a complexity graph for a file showing the relationship between lines of code and complexity.

The above suggests that the complexity of this code has begun in October to grow rapidly.
It is also growing non-linearly as the amount of new code increases. This may indicate
that the code will become harder and harder to understand.

Again, a hotspot is complicated code that you have to work with often.5 Hotspots are
identified internally in development groups graphically or as a list.

5 http://codescene.io/docs/guides/technical/hotspots.html

 8

Figure 2 A graphical representation of code complexity based on code and author churn

Biomarkers
Another tool offered by CodeScene which provides a useful input metric is Code
Biomarkers. According to the CodeScene authors, Code Biomarkers fill a number of
important gaps in code analysis:

• Bridge the gap between developers and non-technical stakeholders: The biomarkers visualization
provides information to managers that help decide on when to take a step back, invest in technical
improvements, and measure the effects.

• Get immediate feedback on improvements: The biomarker trends gives you immediate and visual
feedback on the investments you make in refactoring.

• Share an objective picture of your code quality: The biomarker scores are based on baseline data
from thousands of codebases, and your code is scored against an industry average of similar
codebases.

• Get suggestions on where to start to refactoring: The code biomarkers hint at specific problems in
each file, which also suggests which refactoring that could be used to address the findings.

 9

Figure 3 A Biomarker example

Toxicity
Toxicity is a measure of code with poor internal quality and is hard to maintain or extend.
Toxicity in code can be index based on aggregated measures of common problems.6

Metric Level Threshold

File Length file 500

Class Fan-Out Complexity class 30

Class Data Abstraction Coupling class 10

Anon Inner Length inner class 35

Method Length method 30

Parameter Number method 6

Cyclomatic Complexity method 10

Nested If Depth statement 3

Nested Try Depth statement 2

Boolean Expression Complexity statement 3

Missing Switch Default statement 1

6 http://erik.doernenburg.com/2008/11/how-toxic-is-your-code/

 10

Figure 4 The above table is an example of how toxicity might be measured. It shows metrics that make up a
toxicity score and some example base thresholds on which the multipliers are based.7

Note: These measurements should be only applied to teams, services or programs. They
cannot be used to measure individuals because of statistical variations in R&D teams8.

Services
A service is defined here as anysoftware using application programming interfaces (APIs)
to allow internal or external connections, partners or customers access to data. It is
assumed that services are developed, managed and deployed in an automated way
according to continuous delivery guidelines. Software development should be built on
continuous integration and DevOps principles.9 Services developed using these
continuous integration methods should be continuously evaluated and continuously
improved according to a standard set of outcome metrics. These metrics measure first
and foremost the customer experience (feature expectations, stability and quality) but also
includes speed of feature delivery, release frequency and ultimately costs.

Products
A product is here defined as the binary artefact of software development which is shipped
to a customer (as embedded code, via an online store or as compiled code which once
installed on a client cannot or should not be updated at the will of the developer. i.e. a
library). For a client product (an SDK, an embedded app, internally developed tools and
other client software that is delivered either to a customer or third-party integrator, we
need a measurement which is a simple index calculation. There is a way to roughly
calculate excess rework. Technical staff size includes all technical member of the
extended development, release and operations team needed to deliver a feature set or
full product to a customer.

Technical staff size x percentage of excess rework

Calculating excess rework can be done using JIRA tickets (i.e. “Show-stopper”, “Severe”
and “Serious” tickets for example). % of excess rework eRw can be calculated

eRw	 =
𝐹𝑡
𝐵𝑡

where Ft represents # of feature tickets in a program and Bt is # of P0 to P2 bug tickets
after release. For a more precise measure of excess rework the delta for time to complete
any Bt tickets can be factored into the above equation.

Excess rework can also be used as a measure for services, but I have presented it as a
product metric because the impact is higher in products than in services. Because
products are often delivered less frequently (sometimes because of “middlemen” steps

7 Ibid
8 John Seddon, an occupational psychologist, researcher and professor found” It is worth bearing that in mind when
deciding on which measurements to highlight in an LT environment.
9 See various publications by Martin Fowler, Jez Humble, and others for more information on
Continuous Integration, Continuous Delivery and DevOps

 11

like iTunes or Google Play which delay releases to the end device or customer) the impact
is compounded, whereas service APIs can be updated in smaller increments according to
the principles of CD allowing fix forward solutions.

Alternatives
There are other ways to measure development efficiency and which can be used as
trackable metrics for a workforce productivity assessment. Here are some examples for
which care should be taken that they are not used in isolation.

• Green Builds / day: The number of times a release candidate (green build) is available
from the continuous integration systems.

• Cycle time accurately and consistently measured from code commit to release into
production

• Percentage of promised Features delivered according to JIRA tickets (possibly using
similarly sized tickets)

• Code toxicity / churn: as above
• Percentage of new code covered by unit tests

Transparency via Dashboards
Below are some common metrics that should be applied across development teams
regardless of the product or service they deliver. For each Business Group that produces
different products and services outcomes are sometimes and partially automated,
complementary and occasionally duplicated efforts in the form of shadow IT, CI, QA and
so-called “integration” and even antithetical DevOps teams. The development processes
across these business units should share commonalities (standard ways of working) and
used shared infrastructures and services where appropriate and from which it is possible
to better assess workforce productivity in a standard manner.

Code Review
A code review process is a proven method to finding defects in software when done
consistently and properly. Some code review techniques are more efficient and effective
than others. Generally, the more defects found, the better the process is working (see
next section). This page draws heavily on "Best Kept Secrets of Peer Code Review"
by Jason Cohen, Steven Teleki and Eric Brown by SmartBear Software and based on
research conducted at and in cooperation with Cisco Systems.

Description
The inclusion of a common code review process in development is the first step in the
overall improvement of quality and time-to-delivery. A successful implementation of a peer
review process requires that management (or the leaders of the development groups)
foster a proper code review culture. Finding defects early needs to be understood as a
positive thing - a good thing. Lightweight style code reviews can be efficient and effective
at finding bugs but review processes and review metrics cannot be used to single out
developers!

 12

The cost of fixing defects increases exponentially as software progresses through the
development lifecycle, therefore it's critical to catch defects as early as possible. A study
from IBM showed the following:

Some things to keep in mind when implementing a peer code review process:
1. Difficult or Complex Code has more defects
2. More time yields more defects (up to the limit which a reviewer can concentrate in

a single session)
3. The objective is to produce better code
4. The more defects the better

Suggested Practices

1. Review only 100 to 300 lines of code per session. A Cisco study has suggested
that as the number of lines of code under review grows beyond 300, defect
density drops off considerably.

2. Inspection rates less than 400 LoC/hr
3. Limit the time per session to 60-90 minutes
4. Require proper annotation of source code prior to review
5. Establish quantifiable goals for code review and capture those metrics

• External metrics, such as "reduce support calls by 20%" or "halve the
percentage of defects injected by development." This information gives
you a clear picture of how your code is doing from the outside perspective,
and it needs to be a quantifiable measurement, not just a vague goal to "fix
more bugs."

• Consider that only automated or tightly controlled processes can give you
repeatable metrics; humans aren't good at remembering to stop and start
stopwatches. For best results, use a code review tool that gathers
metrics automatically so that your critical metrics for process improvement
are accurate.

• It's also useful to watch internal process metrics to get an idea of how
many defects are found, where your problems lie, and how long your
developers are spending on reviews. The most common internal metrics
for code review are inspection rate, defect rate, and defect density.

 13

1. Create and use checklists to improve results for developers and reviewers see
checklist below

2. Verify that defects are really fixed
3. Log all defects and decisions

• Defects are logged like comments, also threaded by file and line number.
When an author believed a defect had been fixed, the new files were
uploaded to the same review.

• Once all reviewers agree the review is complete and no defects are still
open, the review is complete and the developer is then allowed to commit.

Adapted from 11 Best Practices of Peer Code Review1

Things to Avoid

1. Reviews of enormous amounts of code. If many thousands of lines of code were
under review, we can be sure this is not a true code review.

2. Trivial reviews. These are reviews in which clearly the reviewer never looked at
the code, or at least not long enough for any real effect. For example, if the entire
review took two seconds, clearly no review took place.

3. Using code review to evaluate developers
4. Using code reviews as a measure of development speed

Metrics
Metric Description
Inspection
Rate

How fast are we able to review code? Normally measured in kLOC
(thousand Lines of Code) per man-hour.

Defect Rate How fast are we able to find defects? Normally measured in number of
defects found per man-hour.

Defect
Density

How many defects do we find in a given amount of code (not how many
there are)? Normally measured in number of defects found per kLOC.

Conclusion
No matter how we measure efficiency or productivity in software development, we must
be mindful to focus our attentions on measuring outcomes: those products and
services which can be measured according to the value of strategic objectives they
produce. Once we begin to accurately measure our work, we can then identify and
eliminate wasted time. The way we calculate inefficiencies will vary between services
and products. For a service, factors like regular deployments to production and limited
time to recover from a bug or failed deployment are key indicators of efficiency. For a
product was can assess the results of full-verification testing and draw inferences about
quality from that. How we use (or abuse) the statistics and information we collect is the
subject of the next chapter, but we should try to keep in mind something Rudyard Kipling

 14

wrote quoting Mark Twain: “Get your facts first, and then you can distort 'em as much as
you please.”10

The objective of this chapter is to propose that we direct our focus to understanding and
measuring software development outcomes instead of simply monitoring activity or output.
Therefore, our metrics must reflect this. The most advantageous and simple outcome is a
product or service delivered rapidly, on-time and with high quality.

10 Rudyard Kipling, From Sea to Shining Sea,

 15

Bibliography
Goldratt, E. (1990). The Haystack Syndrome. New York: North River Press.
Humble, J. J. (2015). Lean Enterprise: How High Performance Organizations Innovate at Scale .

Sebastopol, CA: O'Reilly.
Morris, K. (2016). Infrastructure as Code. Sebastopol, CA: O'Reilly.
Nicolette, D. (2015). Software Development Metrics. Shelter Island, NY: Manning.
Tornhill, A. (2015). Your Code as a Crime Scene. Dallas, TX: The Pragmatic Programmers.
Doernenburg, Aaron, (2008) How Toxic is your Code,

http://erik.doernenburg.com/2008/11/how-toxic-is-your-code/

